EE214 Digital Circuits Laboratory
ﬁl_ot Wadhwani Electronics Laboratory
- Electrical Engineering II'T Bombay

Think it. Make it. Prove it.

Problem set: 6 Date: September 15, 2023

Instructions:

1.
2.

3.

W~

O.

Use Dataflow modeling for writing VHDL description

Perform RTL simulation using the provided testbench and tracefile.
Demonstrate the simulations to your TA

Perform Scanchain on the Xenon board and verify with your TA.

Submit the entire project files in .zip format in moodle.

Problem Statement

Write VHDL description in Structural-Dataflow modeling to generate the sequence 11 0 0 1 1.

Use structural-dataflow modeling only.

Reset is asynchronous in nature i.e. reset effects the output sequence irrespective of the input clock arrival.
On Reset, sequence should start from the first '1°.

Unused states should be mapped to one of the known state which is reset state.

RST

Figure 1: Sequence Generator

Determine number of bits required to distinguish the states individually.
Draw a state diagram to generate the states so that LSB of the states will generate the required sequence.

Draw a state table consisting of Present State, Nest State and D FlipFlop inputs.

H Present State(Qn..Ql Q0) Next State(N_Qn..N_Q1 N_.Q0) Dn...D1 DO H

one state next state DFF inputs

From the state table with the help of K-Maps generate equations for DFF inputs in terms of present state
and reset. Take LSB of the states as your output.

Tracefile format: (< reset clock > < output > < Maskbit >)
Tracefile

Perform Scanchain on the Xenon Board.


https://drive.google.com/file/d/1bKLl1Oo1SsWjxPTA-ZmqTItJBv5z88IL/view?usp=sharing

library ieee;

use ieee.std_logic_1164.all;

package Flipflops is

component dff_set is port(D,clock,set:in std_logic;Q:out std_logic);
end component dff_set;

component dff_reset is port(D,clock,reset:in std_logic;Q:out std_logic);
end component dff_reset;

end package Flipflops;

--D flip flop with set

library ieee;

use ieee.std_logic_1164.all;

entity dff_set is port(D,clock,set:in std_logic;Q:out std_logic);
end entity dff_set;

architecture behav of dff_set is

begin

dff_set_proc: process (clock,set)

begin

if (set='1')then -- set implies flip flip output logic high

Q <= ; —-— write the flip flop output when set

elsif (clock'event and (clock='1')) then

Q <= ; —— write flip flop output when not set

end if ;

end process dff_set_proc;

end behav;

--D flip flop with reset

library ieee;

use ieee.std_logic_1164.all;

entity dff_reset is port(D,clock,reset:in std_logic;Q:out std_logic);
end entity dff_reset;

architecture behav of dff_reset is

begin

dff_reset_proc: process (clock,reset)

begin

if (reset='1')then -- reset implies flip flip output logic low

Q <= ; -— write the flip flop output when reset

elsif (clock'event and (clock='1')) then

Q <= ; —-— write flip flop output when not reset

end if ;

end process dff_reset_proc;

end behav;

library ieee;

use ieee.std_logic_1164.all;

-- write the Flipflops packege declaration

entity Sequence_generator_stru_dataflow is

port (reset,clock: in std_logic;

y:out std_logic);

end entity Sequence_generator_stru_dataflow;

architecture struct of Sequence_generator_stru_dataflow is
signal D :std_logic_vector(...);

signal Q:std_logic_vector(...);

begin

-- write the equattions in dataflow e.g z=a+bc written as z <= a or (b and c)
-- for DFF inputs which was derived and also for y.

-- Instantiate components dff_reset

-— and dff_set appropriately using port map statements.
end struct;



e Demo code snippet is given. Change the code accordingly.



